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The practical significance of accurate structure factors F(S) is discussed and illustrated in terms of 
different sorts of detailed structural information that become accessible when accurate estimates of 
F(S) are available and analysed appropriately. The common and contrasting features of X-ray and 
neutron F(S) (of non-magnetic systems) are considered. 

Structure factor formalism is reviewed to show the simplifications that are implicit in the formalism 
normally adopted for operational data-treatment. Limitations in the normal formalism introduced 
by the 'spherical atom' approximation and the Gaussian ellipsoid harmonic rectilinear vibration ap- 
proximation are shown with reference to the generalized formalism which avoids these constraints. 
The use of the generalized formalism for studying electron distribution aspects of covalent bonding 
in diamond structures and anharmonic aspects of anionic motions in fluorite structures is considered in 
detail. 

The difficulties of making reliable judgments on the probable real accuracy of F(S)-estimates by 
referring them to 'spherical atom' models are illustrated in terms of different sets of F(S) data reported 
for MgO. The results of applying a variety of such models to the various data sets are discussed. 

The limitations of conventional Gaussian vibration formalism for extended studies (by either X-rays 
or neutrons, or both) of organic systems possessing appreciable librational behaviour are illustrated in 
terms of the generalized (neutron) formulation of F(S) that is needed to take proper account of libration 
in cubic hexamethylenetetramine (HMT). It is shown that limitations of the conventional formalism 
are such that no simple 'libration correction' is strictly applicable to the atomic positional parameters 
of HMT as determined via the normal structure factor formalism. 

1. Introduction 

The emphasis of this meeting will be on X-ray struc- 
ture factors and how we can obtain better estimates 
of these basic quantities from the intensities measured 
in Bragg scattering experiments. The problems to be 
overcome before results of accurate experiment can be 
converted into structure factor form are evident in the 
topics to be considered here subsequently. The variety 
of such problems is quite daunting, and the faint- 
hearted sceptic may well query two things: (a) whether 
the complicated manoeuvres required to improve ac- 
curacy can be justified in terms of their leading to in- 
formation of a sort not evident in results from coarse 
experimental practice; and (b) perhaps even more im- 
portantly, whether current methods for operational 
handling of these problems will in fact ensure structure 
factor data of the high accuracy desired. 

Both these questions bear on the significance we may 
attach to accurate structure factors, and this is a matter 
that can evoke different responses from different people 
according to their particular interests. I think it is use- 
ful here first to discuss this matter in a few general 
terms and then to consider some detailed examples of 
the sorts of structural information that appear to be 
accessible when we have structure factors which are 
of significantly high accuracy. Although the emphasis 
of this meeting is on X-ray structure factors, it is pro- 
fitable to consider these quantities together with the 
neutron structure factors of non-magnetic systems. The 
information on aspects of chemical structure that is 
accessible by these two methods is largely complemen- 
tary, and we have a quite firm basis for exploiting the 

differences in the two types of structure factor that 
arise from the different atomic scattering powers ap- 
propriate to the two techniques. 

2. Theory 

Little basic theory is required for discussion here and 
we shall use a notation which is sufficiently familiar 
not to require too much comment: the notation is es- 
sentially that of Dawson (1967a), where details not 
included here are available. 

The starting point for discussion is the familiar 
Fourier transform 

F(S) = I Q(r) exp {2~ziS. r}dr (2.1) 

relating the X-ray structure factor with the overall dis- 
tribution of electron density, Q, throughout the unit 
cell. Subsidiary complications in F(S) associated with 
anomalous scattering phenomena will be ignored here. 
The form of 0 which interests us refers to the space- 
and time-averaged version of the unit cell contents: 
this is all we can consider in a bulk experiment on a 
system possessing zero point and thermal motion be- 
haviour. We must assume in accurate studies that, as 
far as the space-averaging is concerned, all unit cells 
in the bulk crystal have equivalent time-averaged 
contents. Practical usage of (2.1) requires that we re- 
formulate it in discrete-atom terms, which we can do 
by standard steps and thereby obtain F(S) in the form 

F(S)-- XJ)(S)Tj(S) exp {2zciS. re,z}. (2"2) 
J 
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The essential features here are (i) that we have parti- 
tioned the total distribution into a series of 'atomic' 
distributions centred on the j nuclear positions nomi- 
nated by the re, j, and (ii) that we next regard each such 
distribution as the resultant produced by convoluting 
the distribution of the stationary 'atom' with the func- 
tion which smears the distribution out over a greater 
volume in accord with the effects of thermal vibration 
in Bragg scattering. 

The formalism of (2.2) is quite familiar, and we can 
take the further step of expanding its J)- and TFfactors 
in accord with the general possibility of non-centro- 
symmetry in the 'atomic' functions whose Fourier 
transforms govern the nature of these two factors of 
(2.2). Writing these functions as 

0j(r') = 0c, j(r') + e . , j ( r ' ) ,  

ts(r')=tc,j(r')+ta, j(r') (2.3) 

by separating components possessing centrosymmetry 
and antisymmetry with respect to the re, j (to which 
the r' of (2.3) are referred), we then also write 

J~(S) =fc, i(S) + ifa,j(S), 
Ti(S)= Tc,j(S)+ iTa,j(S) . (2"4) 

These expressions simply state that any unsymmetrical 
function can be treated as a sum of even and odd com- 
ponents and that the Fourier transform of such a func- 
tion is complex: however we shall see later that it 
proves particularly useful to have these facts clear in 
the forms of (2.3), (2.4). Inserting them in (2.2), and 
considering just centrosymmetrie structures where 
F(S)=A(S)+iB(S)  has B(S)=0,  we now have 

F ( S ) =  Z; [{fc,j(S)Tc, j(S) 
J 

-fa,j(S)Ta,j(S)} cos 2rcS. re, j 

-{ fc ,  j(S)Ta,j(S) 
+fa,j(S)Tc, j(S)} sin 2~zS. re,z]. (2"5) 

This formalism retains the familiar threefold subdivi- 
sion into scattering, vibrational and positional factors 
but it separates the various terms which arise from 
dividing the 'atomic 'functions in the even-odd manner 
of (2.3). 

On this basis, another subdivision which proves most 
useful is to expand the electron density function one 
stage further to 

oj(r')=~c,j(r')+JOc,~(r')+Oa,j(r') , (2.6) 

in which case 

fj(S)=fc, j(S)+gfc,j(S)+ifad(S) . (2.7) 

The centrosymmetric features are now expressed in 
terms of major spherically symmetric segments and 
subsidiary non-spherical segments. Among other 
things, this shows us the simplifications in (2.5) that 
automatically accrue in neutron (point atom) scatter- 

ing. All complications associated with Qj(r')- and J)(S)- 
considerations disappear since only angle-invariant 
neutron scattering amplitudes bj are then involved. 
The transition from the X-ray to the neutron situation 
can be made with the conversion fc, l(S)-+ bj. With 
this in mind, rewriting (2.5) as 

F ( S ) =  S, [fe,j(S)Te, j(S) cos 2nS.  re, j 
J 

-fc,j(S)Ta,j(S) sin 2nS .  re, j] (2"8) 

provides the neutron version of F(S) which corresponds 
to (2.5) for X-rays. Apart  from this attribute in (2-8), 
this form of F(S) also leads us to the X-ray (or neutron) 
structure factor formalism which is normally used in 
practice. Not only is it customary to treat the atoms 
as scattering spherically symmetrically but also to re- 
gard their vibrational behaviour as describable in the 
Gaussian terms associated with harmonic rectilinear 
vibration. In this description, the essential feature is 
that both the tF and TFelements are purely centro- 
symmetric, so that the components of (2.8) involving 
the Ta, Ffactors are now ignored. The nett result can 
be accommodated here writing F(S) as 

F ( S ) ~  Efca(S)T~.j(S ) cos 2 a S .  ~j, (2.9) 
J 

where the h superscript denotes the harmonic (vibra- 
tion ellipsoid) approximation and we have replaced 
the parameter re,j by the new parameter ~j. In some 
cases we can confidently write re, j -~ j ,  but this is 
generally not possible, as we shall see later. 

It is clear that development of the usual expression 
(2.9) from the initial forms (2.1) or (2.2) involves a 
number of quite sweeping simplifications. Further, our 
problems of justifying any or all of these simplifications 
are enhanced because, in a complicated structure 
where atoms are in general positions, we know very 
little about the various structural details that all con- 
tribute to F(S) in (2-2). We have no detailed knowledge 
of the J~-terms which refer to scattering from bonded 
atoms, the Tj-terms which summarize vibrational ef- 
fects manifested by these bonded atoms, or even the 
positions re, j about which the vibration occurs. In the 
face of all this doubt, we often have no recourse except 
to the standard formalism of (2.9), which we use by 
combining the Gaussian vibration treatment with esti- 
mates of the fc,j(S) provided by theoretical (e.g. Har- 
tree-Fock) calculations of spherical non-bonded 
atoms. 

The adoption of this model for initial approach to 
all the parameters relevant to (2.2) is not in dispute. 
However, it is now becoming clear that attempts to 
define the parameters of (2.2) may be seriously pre- 
judiced by structural artefacts which can arise from 
over-application of this model to accurate structure 
factor data. The likelihood of such artefacts will de- 
pend roughly on the number of positional and vibra- 
tional parameters that need to be defined for (2.2), and 
dangers arising from abuse of the 'spherical atom' 
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model need further examination. The problem of arte- 
facts reflects our lack of detailed knowledge of the 
J~(S) and Tj(S), and systematic study of these factors 
is required. 

3. Applications of theory 

(1) Diamond structures 
(a) Diamond itself 

The structure of diamond (Fig. 1) provides a valuable 
opportunity for clarifying some aspects of the signifi- 
cance of accurate structure factors. The total structure 
is cubic and centrosymmetric, each atom is tetrahedral- 
ly bonded to four neighbours so that it possesses Ta 
site symmetry, the equilibrium parameters re, j are 
known since symmetry arguments alone dictate the 
atomic locations in the unit cell, and vibrational effects 
at room temperature are very small. This last feature, 
reflected in the high Debye characteristic temperature 
(OM > 1800°K), indicates that the ts- and Tj-functions 
here can be treated quite safely in isotropic Gaussian 
terms. With the re,j known and the Ts(S) defined in 
this simple fashion, the principal interest in accurate 
structure factors for diamond resides in the informa- 
tion they can provide on electron distribution features 
of covalent bonding between the carbon atoms of this 
classic structure. The celebrated aspect of this structure 
is the so-called 'forbidden' reflexion 222, whose signi- 
ficance was recognized initially by Bragg (1921) and 
whose magnitude was first established reliably by Ren- 
ninger (1955). G6ttlicher & W/51fel (1959) have deter- 
mined the structure factors of the conventional reflex- 
ions by careful X-ray studies of fine diamond powders. 

The details of an extended electron distribution study 
based on these data have been given elsewhere (Daw- 
son, 1967b), but the stategy involved and the conclusions 
that can be drawn may be summarized as follows. We 
write (2.5) as 

F(S)=  S [{f~a(S)+~f~a(S)} 
J 

cos 2zcS. rea-faa(S)  sin 2z~S. re.j], (3'1) 

where the primes denote the temperature-modified 
components 

f~a(s)=fc,j(S)T¢a(S) , Jf~,j(S)=~fca(S)T,,j(S ) etc. 

with 

Te, j (S ) -  T~(S) = exp ( -  BS2/4}, 
/~=8zt2(u 2) (=0.20 A2). (3.2) 

These components correspond to the (temperature- 
modified) components 

Q~(r) =p~,j(r) + JQ~a(r) + Q~,a(r ) , (3.3) 

where for convenience we replace r' of (2.3) by r. The 
Ta site symmetry dictates the detailed character of the 
non-spherical components of (3.3). Expanding these in 
terms of the Kubic Harmonics of yon der Lage & 
Bethe (1947) and retaining only the leading members 
of these expansions then leads to (if we drop the atomic 
subscript j )  

JO'c(r) =~Oc,4(r) = G4(r) [{(x4 +y4-k- z4)/r4) - ~ ]  
t • 0a(r) = Qa,3(r) = F3(r) [xyz/r3], (3.4) 

where F3(r) and G4(r) are  independent radial functions 
which can be expressed in terms of elementary func- 
tions of the form rq exp (-o~rra), with q ¢  0 to ensure 
that the components have regular behaviour at r=0 .  
The non-spherical f-components of (3.2) then become 
(again we drop the j subscript) 

~ f ;  ( S )  = • 4 ~fc.4(S)=[{(h +k4+14)/(h2+k2+12) 2} 

- 

f~(S)= f',,3(S)=-[hkl/(hZ+kZ+lZ)3/z]fp,~a(S), (3.5) 

where 

f f~c,4(S) = 4zcr2G4(r)j4(kr)dr 
o 

S pt , f.P 3(S)= 4rcr2Fa(r)j3(kr)dr 
o 

the jn(kr) being spherical Bessel functions of order n 
with k=2nS=4zc sin 0/2. Similarly, the spherical f- 
component of (3.2) involves 

i 
oo 

= - "  " 4rcr pc(r)jo(kr)dr, (3.6) 
0 

and we now have F(S) of (3.1) expressed in terms of 
three principal scattering factors dependent only on S. 

z 

O 

Fig. 1. The diamond structure. 
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The expansion of (3.3) in the terms of (3.4) means 
that 

5 S 0'(r)dr = 4rcrp-'c(r)dr= Z 
0 

and 

I '  I ' •a.3(r)dr = ~ o c . 4 ( r ) d r = 0 ,  (3.7) 

where Z is the atomic number. The role of the com- 
ponents of (3.4) is to redistribute the Z electrons, the 
angular nature of the redistribution being set by the 
relevant Kubic Harmonic and the magnitude being 
governed by the associated radial functions F3(r) or 
G4(r). Hence, the behaviour o f f , (S )  of (3.6) is quite 
conventional: its value is Z at S =  0 and its subsequent 
diminution as S increases will depend on the detail in 
p-'~(r) itself. By contrast, the two principal factors of 
(3.5) will be zero-valued at S=0 ,  thereafter increasing 
(before finally diminishing again) in accord with the 
detail in F3(r) or G4(r) and also with the order of spher- 
ical Bessel function involved. 

These considerations provide the basic strategy for 
detailed examination of the structure factors of dia- 
mond, and we apply it in accord with the nature of 
(3.1) for different types of reflexions. The odd-index 
(4n+ 1) reflexions involve all features of the bonded 
atom in (3.3), (3-4), the even-index (4n) reflexions in- 
volve only the centrosymmetric components, and the 
222 reflexion involves only the antisymmetric compo- 
nent of the atom. The sparsity of the diamond data 
imposes two restrictions in using this strategy, and we 
assume first a Hartree-Fock basis for the spherical 
component of (3.3). This enables us to rewrite (3.6) as 

f '~(S)=f(H.F., 3P) exp {-/~$2/4}, (3.8) 

where/~ is the parameter required to modify the static 
Hartree-Fock f-values (of the spherically averaged 
charge distribution of the atom in its lowest ground 
state configuration, 3P) for the effects of thermal vi- 
bration: we take B=0.20 A 2 at room temperature. 
Next, we assume a simple, common, representation 
for the radial functions F3(r) and G4(r). With these two 
assumptions, it transpires (Dawson, 1967b) that non- 
spherical features of the diamond structure factors can 
be interpreted extensively with 

F3(r) = K22r z exp {-er2} , 

G4(r)=L22r z exp { - e r 2 } ,  (3.9) 

where the K-, L- and e-parameters have the values 
7.5, - 2 . 0  and 2.2 A z. 

The meaning that attaches to these versions (3.9) of 
the components of (3.4) is shown in Figs.2 and 3. 
These illustrate essential aspects of covalent bonding 
in diamond, Fig.2 showing, for a single C-C bond, 
the way in which the non-spherical atomic charge den- 
sity components behave in the directions (111) and 
(100) of the diamond structure. Fig. 3 shows the over- 
all effects of non-spherical charge distribution as we 

see them manifested in the (1T0) plane of diamond 
(where the shaded atoms of Fig. 1 are located). Full 
discussion of these figures has been given elsewhere 
(Dawson, 1967b) and we note only salient features here. 
The upper part (a) of Fig. 2 shows how the 8Q~.4- and 
Qa.3-components of each atom in the bond have re- 
distributed charge to produce the pile-up in the middle 
of the bond, and (a) of Fig. 3 shows the complete 
structural analogue in the plane (1T0). Part (a) of Fig. 3 
can be construed as a theoretical 'difference Fourier' 
map, and all its features are the outcome of super- 
position of the non-spherical atomic features which 
emanate from, and are therefore referred to, the atomic 
sites themselves. By contrast, (b) of Fig. 3 shows the 
conventional 'difference Fourier' map associated with 
use of the 'spherical atom' model. The differences be- 
tween (a) and (b) are minimal and we shall not discuss 
them here (see however Dawson, 1967b). The essential 
point of the relation of (b) to (a) is that interpretation 
of (b) alone is normally attempted by arguments of 
'charges in the bonds', made with the implication that 
features of bonding redistribution are features which 
require special treatment and which are not amenable 
to treatment in terms of the natural reference origins, 
the atomic sites themselves. The generation of (a) by 
the treatment outlined above shows very clearly that 
such an interpretation of (b) for diamond is not only 
unnecessary but also confusing. All features of accurate 
structure factors for diamond can be interpreted in 
straightforward terms when we recognize the implica- 
tions of Ta symmetry for the bonded carbon atom and 
treat the F(S) accordingly. 

This approach to the charge distribution in diamond 
now puts us in a useful position for assessing the sig- 
nificance of attempts to calculate this distribution from 
fundamental theoretical principles. Such calculations 
are of the greatest importance for extending our basic 
knowledge of solid-state phenomena, and a number of 
such calculations have been undertaken since the 
pioneering attempt of Ewald & H/Snl (1935) to repro- 
duce the 222 reflexion. It is fair to say that this reflexion 
has held a quite hypnotic fascination for theorists, 
virtually to the exclusion of all other diffraction features 
of diamond, and this fascination has been evident in 
the results of many calculations: improvements in 
theoretical estimates of 222 have not been accompanied 
by improved estimates of all the other reflexions. It is 
clear from (3.1) however that 222 is only one, albeit 
unusual, manifestation of bonding effects in diamond 
and that all reflexions over a very considerable angular 
range must be considered jointly if these effects are to 
receive a properly comprehensive description. The re- 
cent basic calculation of Goroff & Kleinman (1967) 
appears to have taken significant steps forward to- 
wards reproducing a wide range of diamond structure 
factors, and the comparison of their and others' pre- 
dictions with existing experiment is shown in Table 1. 

The significance of accurate structure factors for 
diamond takes on special importance now that basic 
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theory and accurate experiment appear to be reaching 
the point of profitable interaction. On the experimental 
side, the analysis of future F(S) data in the terms out- 
lined above should permit close and ready appraisal 
of the authenticity or otherwise of the F(S)-values 
derived from subsequent experiment. On the theoret- 
ical side, we may hope that confrontation with highly 
reliable F(S) data may spur the theoretician to yet 
more comprehensive basic calculations such that he 
can take the initiative in asserting what the absolute 
structure factors of diamond really are. 

(b) Silicon and germanium 
Although these are just the heavier structural ana- 

logues of diamond, possessing all the same diffraction 
features including 222 (Renninger, 1960), the difficul- 
ties of experimentation and interpretation increase 
rapidly with the rise of atomic number. We can still 
approach the F(S) data in the fashion of (3.1), but 
problems of comprehensive electron redistribution 
interpretation are greater because the scattering effects 
of the non-spherical components of (3.3) are now very 
much smaller fractions of the total scattering power 
of the bonded atom. Except for 222, the problems are 
virtually impossible for germanium (Dawson, 1967d), 
and only silicon offers any real prospect for useful 
examination in the manner used for diamond (Dawson, 
1967c). 

X-ray studies of silicon are unusual in the sense that 
this structure is one of the few whose structure factors 
have been determined other than by the method of 
first measuring Bragg intensities. Kato and his col- 
leagues (Hattori, Kuriyama, Katagawa & Kato, 1965) 
have exploited PendellSsung fringe phenomena in 
wedge-shaped perfect crystal specimens and shown 
how dynamical X-ray theory allows the fringe spacings 
observed to be converted into estimates of the struc- 
ture factors. This is a very specialized technique, pos- 
sible and useful only when strain-free crystal specimens 
of very high perfection are available, and its subtleties 
will be the subject of discussion by Professor Kato, 
Dr M. Hart  and others later in this meeting. Only the 
potentially great attractions of this technique for esti- 
mating structure factors need be noted here, namely 

that problems of extinction which colour intensity 
measurement are entirely absent and that the structure 
factor estimates are on the absolute basis. This novel 
method has yielded estimates which are quite similar 
to those obtained in two careful intensity experiments 
on silicon, one using powder techniques (Grttl icher & 
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Fig.2. Features of the covalent bond between any pair of 

atoms in diamond. (a) The assemblage of the non-spherical 
atomic components along the bond direction. Broken lines 
are 0',, a-components and dotted lines the d~0'c, 4-components 
for the K, L and ~ parameters discussed in the text. The 
heavy full line shows the total resultant along the bond. 
(b) The 80"e,4-component (for either atom in the bonded 
combination) along directions corresponding to (100) in 
diamond. The O',,3-component is zero in these directions. 

Table 1. Comparison of  experimental and theoretical IF(S)I of  diamond 

hkl I F(experiment)l 1F(7"5-2"0) 1 IF(C)[ IF(B) I I FI(GK)I I F2(GK)I 
111 18.696 + 0.040 18-73 18.53 17.95 18.72 18-71 
220 15.392 + 0.072 15.46 15.01 14.81 15.57 15.62 
311 9.060 + 0.040 9.03 9.18 8.58 9.07 9-06 
222 1.160 + 0.080 1.16 0.49 0.99 0.80 0.80 
400 1 I. 192 + 0.072 11-35 I 1.82 11.34 11.37 11.36 
331 8-344 + 0-028 8.27 8.10 m 8.42 8.40 
422 10"576 4-_ 0"016 10.54 - -  u 11.31 11.29 

511 - 7-00 - -  - -  7-60 7-59 

F(C), F(B), FI(GK) and Fz(GK) are the theoretical values of Clark (1964), Bennemann (1964) and Goroff & Kleinman (1967), 
respectively, obtained after applying the factor exp {-0.20 sin2 0/22} to bring them into accord with the (scaled) F(experiment) 
of Grttlicher & Wrlfel (1959). The scaling and the F(7.5-2.0) are discussed in Dawson (1967b). The FI(GK) and Fz(GK) involve 
respectively, the Herman-Skillman and Jucys estimates of Is scattering noted in the text of Goroff & Kleinman. 
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W61fel, 1959) and the other single-crystal technqiues 
(DeMarco & Weiss, 1965). 

The existence of these three sets of F(S) data thus 
offers an unusual opportunity for comparison of three 
different techniques, each of which has its own peculiar 
problems and difficulties. It transpires, however, that 
comparison with reference to the predictions of the 
'spherical atom' model is quite inconclusive: all three 
sets appear roughly equally good, or bad, in terms of 
this model. A much sharper criterion is required before 
we can make any useful judgment on the relative merits 
of the three sets, and the results found from studying 
diamond in terms of (3.1) have a special relevance here. 
The arguments from (3.1) onwards are basically group 
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F i g .  3. F o u r i e r  r e p r e s e n t a t i o n  o f  c o v a l e n t  b o n d i n g  m a n i f e s t e d  
• in (1T0) of diamond. (a) The representation given theoreti- 
cally by using the K, L and ~ parameters used previously for 
Fig.2. (b) The corresponding representation given by con- 
ventional 'difference' Fourier methods. Positive contours 
(full lines) are at intervals 0.05, 0.10, 0.20, 0.30, etc. e.A-3, 
negative contours (broken lines) are at the intervals -0.05, 
-0.10 e./~-3, and the zero contour is dotted. These results 
apply to reflexions of diamond with sin 0/2 < 0.7 A-1. 

theoretical consequences of Ta site symmetry so that, 
with appropriate modification of the /~  parameter of 
(3.8) and the K, L and ~ parameters of (3.9), we must 
expect that they will be equally applicable to accurate 
structure factors of silicon. When the above three sets 
of data are approached on this basis (Dawson, 1967c), 
it emerges that only Kato's results are amenable to 
systematic detailed interpretation. 

This conclusion focuses attention on the immediate 
need for further experimental X-ray studies of silicon 
by both intensity and PendellSsung methods. The 
former are required if systematic resolution of deficien- 
cies in the earlier such experiments is to be achieved, 
and the latter are required to resolve some residual 
uncertainties which seem to exist in Kato's  1965 esti- 
mates. The present evidence of covalent bonding effects 
in silicon (Dawson, 1967c) shows that much more 
stringent levels of accuracy in structure factor measure- 
ment must be achieved here if a comprehensive electron 
distribution study is contemplated. 

(2) Fluorite structures 
Another important example of structural informa- 

tion that becomes accessible with accurate structure 
factors is provided by detailed neutron studies of com- 
pounds possessing the fluorite structure. This structure 
(Fig. 4) is possessed by compounds such as CaF2, BaF2, 
UO2 and many others. Like diamond, this structure 
is also cubic and centrosymmetric, and all atoms (ions) 
occupy special positions so  that their re,j are known. 
However, greater complexity exists here since this 
structure is essentially ionic and the site symmetries of 
the two ions are different. The cations (X) have Oh 
symmetry and the anions (Y) have Ta symmetry. The 
X-ray structure factor (2.2) therefore now implies many 
more details of both electronic charge distribution and 
thermal motion than are possible in the diamond struc- 
ture. With this complexity, accurate neutron experi- 
ments become attractive since they allow us to study 
structural features free of uncertainty regarding elec- 
tronic distributions. In effect, the neutron point atom 
characteristic allows us to perform different charge 
density studies on fluorite compounds. These are 
nuclear charge density studies, in other words studies 
of the smearing functions 0(r) which summarize the 
effects in Bragg scattering caused by vibrational ex- 
cursions about the re, 1 which we know from symmetry. 

The general features we expect to find in accurate 
neutron structure factors emerge when (2.8) is written 
in the form appropriate to fluorite structures. This is: 

(i) F(S)=4[~xTe, x(S) + 8[~yTe, y(S) , 
(h + k + l) = 4n 

(ii) F(S)=4DxTc, x(S)-8DyTe, Y(S) , 
( h + k + l ) = 4 n + 2  

F(S)=4bxTc, x(S)-8byTa,  y(S), 
( h + k + l ) = 4 n +  l 

(iii) F(S)=4bxTc, x(S) + 8DyT,, y(S) , 
( h + k + l ) = 4 n -  1 

(3.10) 
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The Oh site symmetry dictates that Ta, x(S)=0 but a 
non-zero Ta, y-factor is permitted by the Ta symmetry 
of the anions Y. We see that the effects of this factor 
should appear in accurate structure factors for the odd- 
index reflexions, and this feature of these reflexions 
provides an immediate contrast with the normal struc- 
ture factor formalism involving harmonic vibration 
theory. The harmonic treatment requires that both 
Te, x(S) and To, y(S) have isotropic Gaussian forms and 
that Ta, y(S)= 0, in which case the odd-index structure 
factors should have isotropic behaviour governed only 
by cation scattering. This behaviour implies that dif- 
ferent odd-index reflexions with a common scattering 
angle should have identical intensities. Thus, detailed 
study of such reflexions should give the best indica- 
tions of failure of the harmonic formalism to account 
for experimental observations. 

This failure has been evident for quite some time 
as a result of careful experiments conducted at Harwell 
by Dr B.T.M.Willis and colleagues on UO2 (Willis, 
1963a, b; Pryor, Rouse & Willis, 1968), CaF2 (Willis, 
1965) and, most recently, BaF2 (Cooper, Rouse & 
Willis, 1968). The measurements on BaF2 are particu- 
larly comprehensive, extending over the range 20- 
600°C, and their interpretation within the framework 
of (3.10) has produced important information on an- 
harmonic vibrational behaviour. 

The development of (3.10) in detail follows lines very 
similar to those associated with (3.1) for diamond, 
except that our concern now is with the smearing func- 
tions tj(r). The isotropic Gaussian smearing function 
of harmonic theory is the starting point, and a con- 
venient general form for tj(r) is obtained by multiplying 
this form by an expansion in powers of the displace- 
ment of the ion from its equilibrium position (Dawson, 
Hurley & Maslen, 1967). To the fourth order of dis- 
placements, this gives 

tj(r)=[e,j(r)+dte, j(r)+ta,~(r) ( j=X,Y)  (3.11) 

where 

fc,j(r) =U~ exp { -  (x2+y2+ z2)/2~} 

~tc,j(r) = ~c,~(r) {G(x" +y" + z4)+ D~(x~y~+y~z~+ z~x~)} 
ta, j(r) = fc, i(r)Ajxyz. 

The parameters aj, A~, G, D~ determine the detailed 
shape of tj(r), N~ ensures that tj(r) is normalized, 
ta, x(r)--0 by the Oh symmetry. Just as with (2.7), the 
transform Tj(S) can be written as 

7)(S)= Tc, j(S)+JTc, j(S)+iTa,j(S) , (3.12) 

but now there is some complication in the Tc,j com- 
ponent ensuing from the (~te, j component of t~(r) (see 
Dawson, Hurley & Maslen, 1967). A much simpler 
result occurs if we ignore the quartic terms of (3.11), 
and this case leads to 

~e,j(S) -- T~ n ~(S)= exp {-/7jS2/4}, /~j=8n2a~ } 
%, j(S) = - (/~j/4~za) 3 T~,j(S)Ajhkl, (3.13) 

where a is the linear unit-cell dimension, h, k and 1 
are the Miller indices of any S, and we can identify 
the a~ parameter with (u~), the harmonic mean square 
displacement parameter. The Ta factor exists only when 
j refers to the anion Y. 

The explicit nature of Ta,j(S) makes it clear how 
accurate odd-index neutron structure factors should 
deviate from the harmonic predictions. The 4 n + l  
values should be greater and the 4 n - 1  values smaller 
than harmonic prediction, with the departures varying 
for each reflexion according to the size of the index 
product hkl involved. A key group of reflexions is the 
common-angle trio 755, 771 and 933 with index pro- 
ducts + 175, - 4 9  and -81 ,  whose intensities should 
be such that 755 > 771 > 933. This trend is shown quite 
strikingly by the BaF/ experiments where the ratio 
1(755)/1(933) varies from about 1.15 at 20°C to about 
2.4 at 600 °C. 

Data analysis in terms of (3.13) thus involves two 
conventional parameters /~x and /~y and the anhar- 
monic parameter Ay. The predictions of (3.10) for 
structure factors at various temperatures can then be 
assessed very simply by considering the even-index 
data separately from the odd-index data. The former 
data can reflect only centrosymmetric vibrational ef- 
fects and thus, in the harmonic treatment, just the con- 
ventional parameters Bj of (3-13). As found earlier for 
CaF2 and UO2 (see Dawson, Hurley & Maslen, 1967), 
so it is found for BaF2 (see Cooper, Rouse & Willis, 
1968) that these two parameters are quite adequate to 
interpret the even-index data. Consistently, the crystal- 
lographic R value for these BaF2 reflexions is ,-, 1% 
at all temperatures. The odd-index situation is quite 
different when harmonic interpretation is attempted in 
terms of just/?x. The resultant R values for these BaF2 
reflexions now rise rapidly for data at higher tempera- 

Fig.4. The fluorite structure for XY2 compounds. The cations 
X are the full circles. 
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tures, varying quite smoothly from about 2.5% at 
20°C to about 11.5% at 600°C. This is consistent with 
the expectations of (iii) of (3-10), and the introduction 
of the extra A y pai ameter immediately allows one to 
achieve R values which, like those for the even-index 
data, are consistently ~ 1% at all temperatures. It is 
thus evident that all BaF2 data, when properly analysed, 
give equal indications of reliability in measurement. 
The results for BaF2 yielded by such analysis are 
typified* by the contents of Figs. 5 and 6. Fig. 5 shows 
Bj-values increasing with temperature in accord with 
normal expectations, and Fig. 6 shows the variation of 
the AF parameter with temperature. The lines in the 
Figures will be discussed below. 

It is of interest to consider how we can convert these 
experimental parameters into some form of 'more 

* The/~j- and Ay-values shown in Figs. 5, 6 are not those 
obtained by Cooper, Rouse & Willis (1968) after applying 
detailed corrections for perturbations associated with thermal 
diffuse scattering (Cooper & Rouse, 1968) and extinction. 
The values shown are from earlier analysis (Dawson, 1967e) 
before corrections for these perturbations had been applied: 
they should not be construed as the final quantitative results 
for BaF2. 

basic' information. An attractively simple method for 
reinterpreting these parameters is to consider them as 
the outcome of effective one-particle potential fields 
V~(r) experienced by the ions in the (small) vibrational 
excursions about their re,j. In this approach, which is 
essentially all that can be done consistent with the ver- 
sion of thermal vibration that we see in Bragg scatter- 
ing, we write Vj(r) in the form analogous to tj(r) of 
(3.11) as (Dawson, Hurley & Maslen, 1967) 

t 

V/(r) = ~'c,y(r) + b Vc, j(r) + Va,j(r) ( j =  X, Y) 
where (3.14) 

17e, j(r) = Vo, J+½czj(x2+y2+ z 2) 

b Vc, j(r) = 7j(x 4 -by 4 -k- g 4) + cj (x2y 2 -~-y222 -b z2x 2) 

Va, j(r) = fljxyz , 

where the ~, fl, y, e parameters define the V~(r) and 
again Va, x = 0  by the Oh site symmetry. Classical 
statistical mechanics relates V~(r) with tj(r) as 

tj(r) = Nj exp { - V j ( r ) / k ~ T } ,  (3.15) 

where kB is Boltzmann's constant, and, if the cubic 
and quartic terms of (3-14) are small, we then have 
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k/(A 2) 
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Fig. 5. Estimates of/~Ba and/~-  in BaF2 at various temperatures given by preliminary analysis (Dawson, 1967e) of the extensive 
neutron experiments reported and more completely analysed elsewhere by Cooper, Rouse & Willis (1968). See the footnote 
in the text. The lines relate to equation (3.17). 
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C j = - ? i / k B T ,  D i = - e i / k B T .  (3.16) 

Since quartic terms were neglected by operational use 
of (3.13), the principal interest of (3-14) and (3.16) lies 
in the ~ and fly. 

The classical basis of the relations (3.16) is evident 
in their unrealistic predictions at T= 0 °K: they predict 
zero values for the Bj so that no account is being taken 
of zero point motion, and they predict infinite values 
for Aj etc. Both these deficiencies are rectified by using 
a quantum rather than a classical treatment, and the 
quantum relation between B~ and ej follows from the 
results of Bloch (1932). Instead of the relation in (3.16), 
we then have 

with 
(u~>z=[(8zc2mjv~ /h) tanh (hv T/2kBT)] -1 

v T = (2zc)-l(~'/mj)lP - , 

(3.17) 

where h is Planck's constant, mj is the mass of the ion, 
=f is the 'force constant' of 17"j(r) in (3.14) at any T, 
and vf is the resultant characteristic frequency at any 
T. At high temperatures where ksT>>hv~, we see that 

(3.17) converges to the classical result (3.16), while at 
T= 0 °K we have 

(~>0 = (h/4zc) (~m~) -1/2 
~j,o=2zch(~mj)_l/2. } (3.18) 

The effects of zero point motion in the/~j of experiment 
are now incIuded, and the lines of Fig. 5 show the Bj- 
behaviour predicted by (3.17) for the two ions in BaF2. 

The corresponding relation between AF and fir is 
more difficult. Strictly, we need the quantum version 
of the smearing function of a three-dimensional iso- 
tropic harmonic oscillator as perturbed by a cubic an- 
harmonic component of Ta symmetry: the precise form 
of this tetrahedral perturbation is what we need for 
proper association with Bloch's result in (3-17). In the 
absence of this information, we can approach the rela- 
tion we require via the results provided by Reitan 
(1958) for the smearing function of the one-dimen- 
sional harmonic oscillator as perturbed by a cubic an- 
harmonic component. This provides the essential fea- 
tures (Dawson, 1969a) of the relation we desire between 
AF and fir, except for a minor ambiguity introduced 
by the attempt to adapt the one-dimensional results 
to the three-dimensional Ta situation. Abbreviating v~ 
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of (3.17) to simply v~, the required result is then best 
written as 

A~" = -fl~" {tanh (hvs/2kBT). 21hv~} x [vs, T], (3.19) 

where 

[vs, T ]=  1 + lOexp {-hvs/kBT}+ e x p { - 2 h v / k n T }  , 
3(1 + exp {-hvj/k~T}) 2 

(3.19a) 

(3.19a) being the part whose relevance to Ta symmetry 
is not certain. No problem exists at high temperature 

where hv~>~kBT, for then all parts of (3.19) converge 
to the classical result As = - f l /k~T given earlier. The 
term [vj, T] enters only as the temperature falls: this 
is shown most clearly by the results at T = 0 ° K  that 
follow according to whether we (a) ignore (3.19a) by 
setting it to unity or (b) include it. The results are then 

(a) A°=-2fl/hv~, (b) A°=-2fl/3hv~. (3-20) 

The two possibilities for the behaviour of As with tem- 
perature lead to the broken lines in Fig. 6. 

6 "0 -  

5"0- 

a i x  1012  

(ergA -2) 

4"0- 

3"0 

i i i i 1 i / i 1 

-200 -1 O0 0 1 O0 200 300 400 500 600 
i 

700 r ( ' c )  

5"0 

- - ~3Fx lO  TM 

(erg A -3) 

4"0 

3"0 

_1~00 -200 
1 i i i I . I 

0 100 200 300 400 500 600 
i 

700 T(°C) 

310 

300 

( ~M  

('K) 
290 

280 

270 

260 1 i i I i 

-2~00 -1'00 0 1;0 200 300 400 500 600 700 T('C) 

Fig. 7. Conversion of the experimental values of Figs. 5 and 6 into estimates of the 0cs and flF parameters of the text. The lower 
part of the Figure gives the values of OM which correspond to the/}s parameters of Fig. 5. 



22 THE S I G N I F I C A N C E  OF A C C U R A T E  S T R U C T U R E  FACTORS 

These e- and fl-considerations enable us to reinter- 
pret the B and A parameters obtained directly from 
the experimental data. Fig. 7 shows the result of con- 
verting the parameters of Figs. 5 and 6 into c~]" and fl]" 
form by use of (3.17) and (3.19) (but ignoring (3.19a) 
in the latter), together with the result of re-expressing 
the Bj. parameters as values of the Debye OM at various 
temperatures. Note however that the results of Fig. 7 
also involve the considerations in the footnote (p. 19). 
The results of Fig. 7 show a minor dependence on tem- 
perature which, as Willis (1968) has discussed, accords 
with 'quasi-harmonic' expectations. In their final anal- 
ysis of BaF2, Cooper, Rouse & Willis (1968) show that 
their estimates of the ~ and fl parameters are consistent 
with a Grtineisen ), of value 2.1. 

It is clear that accurate neutron structure factors of 
fluorite compounds enable a significant amount of 
quite detailed structural information to be derived. 
The BaF2 experiments are of particular interest since 
they incorporate extensive considerations of extinction 
and thermal diffuse scattering. The results from this 
one system show in a quite striking way the profit to 
be gained from accurate structure factors. 

(3) Magnesium oxide 
MgO has the classic alkali halide (NaC1) structure 

which is cubic and centrosymmetric: the atomic posi- 
tions are again dictated by symmetry so that the re, j 
are known, and this time both ions have common 
centrosymmetric (Oh) site symmetry. This structure has 
none of the non-centrosymmetric atomic features 
which we have discussed for the diamond and fluorite 
structures. At most, accurate structure factors of MgO 
can reflect only spherical and (possibly) other centro- 
symmetric features in the electronic charge densities 
and thermal smearing functions of the two ions. On 
the evidence of the neutron studies on fluorite com- 
pounds, we may safely assume Gaussian harmonic 
character for the smearing functions here, so that only 
the electronic charge densities assume significance when 
we have accurate structure factors for MgO. 

The ionic character of MgO then focuses attention 
on the detailed nature of the anion of this compound. 
Within the Hartree-Fock (H.F.) approximation, cal- 
culations for 02.  suggest that this anion is unstable 
in the free state, and Clementi & McLean (1964) have 
shown that a stable 'solution' can only be forced when 
unsatisfactory constraints are imposed to assist con- 
vergence in this H.F. calculation. Their solution in- 
volves an extremely diffuse 2p radial function, and 
their version of 02.  can be usefully summarized for 
our discussion by the value (rZ)ion -- 61"97 (a.u.) 2 where 
(r2)ion is the mean square radius of the ionic charge 
distribution. The existence of 0 2- in MgO thus implies 
that this ion is stabilized by lattice forces which are, 
of course, absent for the free state version. Watson 
(1958) has investigated H.F. versions of 0 2- associated 
with stabilizing potential wells of + 1 and + 2 charge. 
The two resultant versions are naturally different in 

detail, but both show the essential feature that the 
stabilized ion is materially less diffuse than the free 
state 'version': the values of (rZ)ion are now 27"53 and 
24"73 (a.u.) 2 for the + 1 and +2  calculations respec- 
tively. More recently, Yamashita (Togawa, 1965; To- 
konami, 1965) has adopted Watson's + 1 results for 
the ls and 2s functions to calculate the 2p function of 
0 2- in MgO from considerations of Madelung poten- 
tial and exchange interactions with the Mg 2+ ions. 
Yamashita's version of 02- is still more contracted than 
either of Watson's, and his version corresponds to 
(r2)ton ~ 20"9 (a.u.) z. In more detail, the versions of 0 2- 
calculated by Clementi & McLean (C-M), Watson 
[W(1) and W(2)] and Yamashita (Y) have the charac- 
teristics given below in (3.20) for one-electron mean 
square radii: 

(r2)2  (r2)2 (r2)ion 
C-M 0-0531 1.7513 9.7266 61.97 ] 
W(1) 0.0530 1"8353  3.9590 27-53 / (3"20) 
W(2) 0.0530 1.8645 3.4828 24.73 
Y (0.0530) (1 .8353)~2.85 ~20-9 

This problem of O 2- in MgO has prompted several 
careful X-ray studies of this compound in recent years, 
and structure factor estimates have been reported by 
Burley (1965), Togawa (1965), and Raccah & Arnott 
(1967) in the literature. These three studies have been 
discussed extensively by their authors, who have con- 
sidered both the reliability of their respective structure 
factor estimates and also the conclusions that can be 
drawn regarding the relative merits of the Watson and 
Yamashita models. Rather different claims are made 
by these authors, and it is difficult for an outsider to 
obtain a clear picture of how these three investigations 
fit together since the three sets of data have not only 
been analysed but also scaled in different ways. A 
systematic survey, consistently applied to all three ex- 
periments, is required and we summarize here the 
results of such a survey made recently (Dawson, 1969b) 
by considering the structure factors in the following 
terms. 

Including anomalous dispersion effects not previ- 
ously introduced explicitly here, the structure factors 
of MgO can be written as 

F(S) = 4{[re, A(S) + fife, A(S)] T~al (S °) 

+_[fa, B(S)+6fo, B(S)IT~,~(S)}, (3.21) 

where + refers to even index data, - to odd index 
data, A and B differentiate the two ions, and the ther- 
mal factors have the familiar isotropic Gaussian forms 
of (3" 13). The dispersion-affected components fa,j(S) 
have the forms 

fa, j(S) =fe,j(S) + Aft" withfe, j(S)=f°j(S)+ Af~ (3.22) 

if we regard the dispersion corrections Aft, Aft" as in- 
variant with angle. The component f°a(S ) is then the 
part related to the spherical charge distribution through 
the familiar Fourier transform relation (3.6). If we now 
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(a) ignore the non-spherical components 6fc,~(S) of 
(3.21) possible for the two ions, and (b) assume equal 
amplitudes of vibration for the ions, then (3.21) can 
be rewritten as 

IF(S)l = 4T~ar(S) {[fc, A(S) -Ffc, B(S)] 9- 

+(Af~ + Af'~)2}I/z , (3.23) 
where 

T~"r(S)= exp { - B S 2 / 4 } ,  i.e. B a = B B = B .  

We shall return to assumption (b) later. The form of 
(3.23) is such that, given f ° t ( S  ) values and Aft-  and 
Afj'-estimates, we can apply 'Wilson plot' considera- 
tions to examine the various sets of data (by least 
squares) for the optimum values of scale factor (k) 
and /~ that apply when we use the f°,j(S) that refer 
to different models for the charge distribution of 0 2- . 
Barnea (1966) has given the values Af'Mg = 0.16, Af~g = 
0.17, Afo=0.049, Afo =0"032, and Wagenfeld & Gutt- 
man (1967) have reported (for the dipole component) 

/ 

AfMg = O" 19~, Af'ig = 0" 173 ; all are for Cu radiation. 
Results of the survey (Dawson, 1969b) are summa- 

rized in Figs. 8 and 9, where we compare values of 
B, k, r (= Z wA2), the crystallographic R value, and 

the Debye OM corresponding to the B value, which 
follow when we use (3.23) to treat the IF(S)l-estimates 
of Burley, Togawa and Raccah & Arnott in terms of 
different sets of f °,j-values corresponding to different 
interpretations of the total charge distribution in MgO. 
The heavy circles refer to Barnea's estimates of the 
anomalous terms and the light circles to Wagenfeld's. 
The codes N, S, D, W(1) etc. in the Figures indicate 
the different models adopted in the survey here. N 
denotes the neutral atoms Mg and O as described in 
the H.F. tabulation of Clementi (1965). S denotes the 
single ions Mg + and 0% again from Clementi's tabu- 
lation. D refers to double ions, Mg 2÷ from the same 
tabulation and 02- from Clementi & McLean. All 
other models also refer to double ions, with Mg 2+ 
always as in D but combined with various models of 
the 02- charge distribution. W(1), W(2) and Y repre- 
sent the use of the Watson and Yamashita versions 
discussed above, and the remaining three versions used 
for 02- are hypothetical and based on the following 
considerations. Y(C) is the modification of Yamashita's 
model that follows if we replace his choice of Watson's 
+ 1 result for the 2s function by the 2s function of 02- 
as calculated by Clementi & McLean. As seen from 
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(3.20), this modification produces a slightly more con- 
tracted ion than Yamashita's and it has (r2)lon~ 20"7 
(a.u.) 2. Y-W(1) results if we retain Yamashita's ls and 
2s functions [which are those of W(1)] but describe the 
six 2p electrons half in terms of Yamashita's and half 
in terms of Watson's + 1 results. Thus, Y-W(1) is the 
mean of the charge distributions as calculated by W(1) 
and Y, and its (r2)lon-value, by (3"20), is ~ 24.2 (a.u.) z. 
Y-W(2) represents a more extensive modification. This 
combines Watson's +2 results for the ls and 2s func- 
tions with the mean 2p distribution given by taking 
equal parts of the W(2) and Y versions of the 2p func- 
tion. In this case, (r2)ton ~22.8 (a.u.) 2 and, in more 
detail, we see from (3.20) that the '2s' part of Y-W(2) 
is more expanded than that of Y-W(1) although the 
opposite applies to the '2p' parts of Y-W(2) and 
Y-W(1). It is better, however, to regard Y(C), Y-W(1) 
and Y-W(2) simply as three more possibilities for the 
charge distribution of 02- as it exists in MgO. The 
lack of any conventional theoretical basis for these 
possibilities is no impediment to our using them, for 
it is clear that Watson's and Yamashita's calculations 
can only be regarded as crude estimates of the actual 
situation prevailing for 02- in MgO. 

p 

Of more possible concern is the common B assump- 
tion associated with using (3.23) for this survey. How- 
ever, this is not seriously violated when we consider 
the individual/~j-values which correspond to the 'shell 
model' parameters used by Peckham (1967) in his in- 
elastic neutron scattering study of the phonon disper- 
sion relations of MgO. Peckham's parameters yield 
theoretical estimates in quite good agreement with his 
experimental results, and the conversion of these par- 
ameters to/~j form gives (Sanger, 1968) the estimates 
BMg = 0.28 and/~o = 0.34 A 2 at 300 °K. The correspond- 
ing Debye OM is then 821 °K, a value which is in good 
agreement with the estimates of OM given by Yates 
(1966) from thermodynamic data and by Baldwin & 
Tompson (1964) from their X-ray studies of MgO at 
various temperatures. Pending better Bj-estimates from 
parameters which better reproduce Peckham's meas- 
urements, we may regard the common/~ assumption 
as the sensible starting point for our present purposes. 

Figs. 8 and 9 show that quite striking changes occur 
when we examine the different experimental data by 
(3.23) for the various models. (We shall disregard the 
minor features which differentiate the F(S)-estimates 
labelled as Togawa 'absolute' and Togawa 'combined' 
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in combination with the m e a n  of the separate values he lists for the other reflexions from his absolute and relative experiments. 
The Raccah & Arnott F data used here were based on direct reduction of their reported intensities. 



B. DAWSON 25 

in these two Figures, and hereafter consider only the 
'absolute' plot in Fig. 8; these refer to Togawa's meas- 
urements made in terms of an absolute scaling tech- 
nique.) It is clear that the data of Togawa, Burley and 
Raccah & Arnott concur on the trends in r and R 
which arise when we use the models N, S, D, W(1) and 
W(2) to determine the optimum values of k and /~. 
All show the same downward trend for these models 
but, thereafter, rather striking differences become evi- 
dent among the three sets of data. We can summarize 
these differences in r, R and/~ form as follows for the 
models W(2), Y and Y-W(2). 

with expectation. Further, we note that the application 
of Y-W(2) to Togawa's 'absolute' measurements yields 
a scale factor which differs only fractionally from the 
unit value implicit if Togawa's absolute technique had 
been exact. 

The assembled evidence argues strongly that Raccah 
& Arnott's experiment cannot be regarded as having 
given reliable estimates of the true structure factors of 
MgO: there is some serious angle-dependent error 
obviously afflicting their measurements. By contrast, 
no such error is apparent in either Togawa's or Burley's 
experiments. Indeed, these two experiments appear to 

R(%) /~(/k 2) 
Model W(2) 

Togawa 0.1115 (0.1546) 1.13 (1.28) 
Burley 0" 1224 (0.1694) 1.09 (1.33) 
R. & A. 0.3211 (0.4004) 2.08 (2-34) 

Model Y 
Togawa 0.1306 (0.0931) 1.40 (1.19) 
Burley 0.1044 (0.0706) 1.15 (1.02) 
R. & A. 0.0502 (0.0490) 0.95 (1.01) 

Model Y-W(2) 
Togawa 0.0102 (0.0163) 0.37 (0.48) 
Burley 0.0033 (0.0132) 0.20 (0.44) 
R. & A. 0.0854 (0.1276) 1.28 (1.56) 

0.23+0.12 (0.23+0.14) 
0.24+0-13 (0.24+0.15) 
0.43 + 0.20 (0.43 + 0.22) 

0.34+0.13 (0.34+0.11) 
0.36+0.12 (0.36+0.10) 
0.54 + 0.09 (0.54 + 0.08) 

0.28 +_ 0.04 (0.28 +_ 0.05) 
0-30 + 0.02 (0.30 + 0.04) 
0.48 + 0.10 (0.48 + 0.12) 

The leading figures are the result of using Barnea's dis- 
persion estimates for both atoms and those following 
(in brackets) are for Wagenfeld's estimates for Mg. All 
values above, together with the remainder underlying 
Figs. 8 and 9, arise from using (3.23) in least squares 
assigning equal weight to the nine lowest-angle F(S) 
of MgO. Completely analogous results, trends, etc. 
follow if the two lowest-angle reflexions 111 and 200 
are given half weight in forming the least-squares nor- 
mal equations. 

It is evident that the results of Raccah & Arnott 
are in a different category from the others. Whereas 
these estimates can be best accounted for in terms of 
the Yamashita version of O 2-, all the others are in 
best accord with model Y-W(2). The support for 
Yamashita's model provided by Raccah & Arnott be- 
comes extremely dubious, however, when we consider 
the O~t evidence of Figs. 8 and 9, where the horizontal 
broken line indicates OM=821°K discussed above. 
Raccah & Arnott's estimate of OM from model Y is 
ca. 200 °K too low, and this is quite at variance with 
what we should expect from subsidiary perturbations 
in their F(S) introduced by neglect of thermal diffuse 
scattering (TDS) effects: neglect of these effects would 
tend to reduce their /~-estimate and thus raise their 
OM-estimate above that appropriate when TDS has 
been corrected for. The/~- and OM-estimates from both 
Togawa and Burley for model Y-W(2) are, on the other 
hand, quite consistent with these TDS considerations 
so that both these sets of data are behaving in accord 

have produced F(S)-estimates which are in remarkably 
close agreement, a feature which is not apparent from 
the way these workers have tabulated their results in 
their respective papers. This agreement is most interest- 
ing considering the quite different methods of specimen 
preparation employed in the two experiments. 

Regarding the intrinsic merit of model Y-W(2) for 
0 2- in MgO, we must be more cautious since this 
survey has been based on (3.23) rather than (3.21). 
With reservations, however, we see that this model 
does not contravene physical expectations based on 
the mean square ionic radii of (3.20) for the models 
W(2) and Y. The results of this survey suggest that 
only very extensive theoretical calculations of charge 
distribution in MgO will suffice to interpret accurate 
structure factors for this most interesting compound. 

(4) Hexamethylenetetramine 
The crystal structure of hexamethylenetetramine 

(HMT) is another instance of cubic symmetry, but this 
system is very different from the simple inorganic 
systems discussed so far. The HMT structure is body- 
centred and polar, and it contains the molecules 
N4(CH2)6 of Ta symmetry located about the origin and 
body-centre of the unit cell. This structure is much 
more complicated than the previous examples since 
here the re,~ are not specified explicitly by symmetry 
considerations, although symmetry does impose cer- 
tain constraints on the x, y and z components of the 
re, j. Hence, the problem of interpreting the F(S) of 



26 THE S I G N I F I C A N C E  OF A C C U R A T E  S T R U C T U R E  F A C T O R S  

this structure now encounters the difficulties of having 
to define where the atoms are located as well as how 
they are vibrating: HMT therefore embodies many of 
the familiar problems so common in analysing organic 
crystal structures with atoms in general positions. A 
major feature of this structure is that the HMT mol- 
ecules move essentially as rigid bodies (again a common 
feature of organic systems), so that their total motional 
behaviour is the resultant of features which arise from 
rectilinear translational motion and features which 
arise from rocking or librational motion about the 
centre of inertia (here coincident with the centre of 
mass) of the molecule. 

The occurrence of librational motion introduces 
material complications into accurate structure analysis, 
as we know from the important early work of Cruick- 
shank (1956a) which has since been elaborated by 
Pawley (1964, 1968) and Schomaker & Trueblood 
(1968). The essential difficulty here is that the Gaussian 
vibration ellipsoid formalism for thermal motional 
effects breaks down when libration is an important 
feature of the atomic motions, and we see this break- 
down evidenced in the need to apply 'libration correc- 
tions' (Cruickshank, 1956b, 1961) to the atomic posi- 
tional coordinates generated by use of the Gaussian 
formalism. As we noted in {} 2, we can summarize this 
difficulty in general terms by writing 

F(S)~  ZL,j(S)T)a(N ) exp {2~iS.  ~j}, (3.24) 
J 

indicating by the [j that the use of this formalism with 
its T)a-factors will not generate the equilibrium re, j of 
(2-2). 

The evidence of libration is well established and 
characterized for HMT by the extensive studies of 
various sets of experimental data, collected at various 
temperatures, that have been made by Becka & Cruick- 
shank (1963a, b) in terms of (3.24). HMT is a key 
structure for studying libration effects since the mo- 
lecular symmetry obviates problems of correlation be- 
tween translation and libration, and the t , o  tensor 
treatment of Cruickshank (1956a) holds without com- 
plication. Further, the cubic symmetry of the HMT 
crystal structure reduces the tensor treatment to two 
simple isotropic quantities t and co, which refer re- 
spectively to the mean square amplitudes of isotropic 
translation and libration which characterize the total 
molecular rigid body motion. Becka & Cruickshank 
have established these amplitudes quite closely by their 
analysis of the various HMT data, and shown how the 
application of Cruickshank's 'libration correction' re- 
moves the apparent temperature dependence of the 
C-N bond length which appears to exist when direct 
use is made of the f: determined from (3.24). In addi- 
tion, Cochran & Pawley (1964) have made an extensive 
lattice dynamical study of HMT and obtained t and co 
estimates in close accord with those of Becka & Cruick- 
shank for room temperature structure factors of 
HMT. 

Much is thus already known about the structure of 
this compound, but the need remains to establish 
whether the formalism of (3.24) is really adequate for 
very detailed studies of this compound. Essentially, we 
require to examine the chain of simplification in- 
volved in proceeding from the generalized formalism 
of (2.2) to the operational version (3.24) before we can 
be confident that the latter is adequate for any detailed 
studies that may be contemplated when more accurate 
F(S) data for HMT become available. 

We can best consider this matter in the neutron 
scattering situation where no subsidiary J) complica- 
tions intervene. In this case, it transpires (Dawson, 
1969c) that the structure factor for HMT can be written 
in the general form 

F(S) = 2{ S b, L" h lib Tc,rs(S)l~rrs (S)  
r s 

x exp i[2rcS, rrs + Ors(S)]} (3"25) 

where r is the summation over different atom types 
(C, N, H) and s is the summation of the various subset 
members of an individual HMT molecule. We choose 
the one located about the unit-cell origin so that 
Irrsl=rr is simply the equilibrium distance of each 
atom-type from the origin. The elements of (3.25) have 
the form 

Thc,rs(S) = exp { - 2 7 c 2 S 2 [ ( U 2 ) "  COS2Ors 
+ ( U ~ )  ~ sin2Ors]} , (3-26) 

where 

2 , / , ,2 \ ,  etc. (3.26a) (U2) II = ( Ur )r.b. -~- x~r /in, 
U 2 II 2 / , ,2\  II ( r)r.b.= (u)t,~ns + \"r/Ub etc. (3.26b) 

(u~);Ib =r~((co2))2, (u~)~b=r~(o92) (3"26c) 

and 

3T~i~b(S) = exp {2zc4Snr4((o)2)) 3 sin22Or,}. (3"27) 

The angle Ors is the angle between rrs and S, so that 
(3.26) is simply the conventional Gaussian formalism 
for oblately spheroidal vibration referred, for each 
subset member, to the polar axis defined by rrs. We 
have assumed here that the internal vibration ampli- 
tudes/ ,2 , , ,  etc. have spheroidal character referred to \ ~ r / i n t  
these polar axes. This is convenient [although not es- 
sential (Dawson, 1969c)] as it allows the internal and 
rigid body amplitudes to be combined as in (3.26a). 
The rigid body amplitudes for each atom are seen from 
(3.26b), (3.26c) to depend on the two basic mean square 
displacement parameters (b/2)tr&ns and (O.12) which are 
simply another notation for t and co. 

Within the exponential of (3.25), ~rs(S) can be writ- 
ten as 

~rs (S)=(~rs (S )Qrs (S) -  arc tan &s(S) (3.28) 

where 

&s(S) = 2rcSrr(ogz) cos Ors= DtS.  rrs(oF) (3.28a) 

t2,,(S) = 2nzSZr2,(o92) sin=Or,. (3"28b) 
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Neglecting the dT~i~b-factor which is of order ((092)) 3, 
(3-25) can then be simplified to 

F ( S ) = 2 ( X b r  X h Tc.rs(S ) exp [2~iS. ~rs(S)]}, (3"29) 
r s 

where 
~rs(S)=rrs[1-(o02)+(o02)g2rs(S)] , (3.29a) 

which is correct to order ((o02)) 2 . 
The key feature of (3.29) is the unusual parameter 

its(S), and its presence has three consequences. First, 
it means that each of the s members of a crystallo- 
graphic subset will have, for every scattering vector S, 
a magnitude I~rs(S)l which depends on the value of 
sin2Ors that applies to each member of the subset. 
Second, it means that each such individual quantity 
varies from reflexion to reflexion according to the 
nature of S 2 associated with each S. Third, it means 
that the variation will be the greater for outer atoms 

2 These are of HMT through the dependence on rr. 
quite unusual features, and we see from (3.29a) that 
they arise from second-order effects in (o02). If we 
could neglect these, then we could write (3.29a) as 

~rs(S),,,~rs=rrs(1-(o02)) , (3"29b) 

in which case we could identify this relation with the 
i-parameter of (3.24). This would give a simple basis 
to the idea of 'libration correction', for we see that 
(3.29b) simply implies that the molecule appears 
shrunken inwards towards its centre, the shrinkage for 
each atom being rr(o02). Further, this first order argu- 
ment would convert the T~,rs-factors into the exact 
form associated with the original t,o~ treatment of 
Cruickshank (1965a). 

Unfortunately, we cannot replace (3.29a) by (3-29/)) 
unless very small libration amplitudes are involved 
(say (o02),-~7 deg2), and this is not satisfied in HMT 
except at very low temperatures: at room temperature, 
(o02) ,,~ 44 deg 2. Neglect of the unusual feature of (3.29) 
then means that the position parameters extracted by 
use of (3.24) must be viewed only as the resultants 
yielded by the operation of two sorts of averaging 
procedures, one over the different subset members and 
the other over the various F(S) data being treated in 
terms of (3.24). The precise numerical character of 
these resultants will depend on the weighting, angular 
range and specific nature of the F(S) being analysed 
in the conventional fashion, and now the idea of 'li- 
bration correction' takes on a quite new meaning. 
Among other things, it is not possible to compare 
parameters derived from different sets of experimental 
data unless it can be guaranteed that the same pro- 
cesses of averaging are relevant to the analyses of the 
different data sets. 

The contrast between (3.29) and (3.24) has consider- 
able implications for attempts to correlate parameters 
from neutron and X-ray studies as a preliminary to 
seeking the electron distribution information contained 
in the f-terms of the X-ray F(S). Such a philosophy 

has great appeal, the philosophy being that neutron 
determination of vibrational and positional parameters 
opens the way to reliable X-ray electron distribution 
studies, and this philosophy is now being applied quite 
intensively to small organic molecular structures where 
libration effects are often quite prominent. Without 
challenging the philosophy itself, it would appear from 
the HMT formalism of (3.29) that the practice of this 
philosophy by data-analysis based on (3.24) may well 
introduce artefacts of a size not unlike the authentic 
features of electron distribution that this philosophy 
aims to seek out. 

4. Conclusion 

This discussion of the significance of accurate structure 
factors is limited in its coverage of the detailed struc- 
tural information that appears to be now emerging 
from extended diffraction studies. Nevertheless, the 
examples quoted do serve to illustrate the two points 
of quite basic importance that must colour our ap- 
proach to the general matter of accurate structure 
factors. 

(a) If we do indeed happen to achieve accurate 
structure factor estimates, then we must ensure that 
their significance is not dissipated by subjecting them 
to analysis procedures which are too coarse to allow 
adequate resolution of the detailed structural informa- 
tion being sought. The obvious dangers here involve 
abuse of the 'spherical atom' model and the Gaussian 
ellipsoid harmonic rectilinear vibration model. The 
structures of diamond and fluorite provide interesting 
commentaries on the limitations of these models. Re- 
garding the strategy of joint X-ray-neutron studies as 
a means of circumventing the 'spherical atom' limita- 
tions for detailed X-ray studies of molecular structures 
where libration effects are present, the structure factor 
of HMT sounds a useful warning that the combination 
of the Gaussian ellipsoid model with conventional 
structure factor formalism may seriously prejudice the 
outcome of ventures based on this joint strategy. 

(b) The other point, perhaps of more immediate 
practical concern, is that of deciding between nominal 
precision and genuine accuracy achieved in structure 
factors in the light of all the difficulties and correction 
procedures that arise when we proceed from raw ex- 
perimental data to final estimates of structure factors. 
The long chain of complication that is involved here 
is to be the main preoccupation of this meeting, and 
the subsequent discussions of TDS effects, extinction 
effects and multiple elastic scattering effects will clear 
our thoughts on how to treat adequately the perturba- 
tions which are introduced by such effects. It is clear, 
however, from the MgO survey and also the results 
for silicon, that we must exercise considerable care 
when trying to judge the ultimate structure factor 
accuracy achieved experimentally by reference to theo- 
retical 'spherical atom' models that are too crude to 
provide definitive guidance on what has been the real 
outcome of careful experiment. 

A C 2 5 A  - 3 
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The whole aim of accurate experiment is, of  course, 
to provide a useful commentary  on detailed aspects of  
current theory of  the solid state. At present, it appears 
that  this aim can be implemented profitably only if  we 
allow theory and experiment to interact in the manner  
illustrated by the discussion given in §§ 2 and 3. 
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DISCUSSION 

SCHOMAKER: Have you tested the introduction of the first 
anharmonic terms in the libration treatment of HMT and 
would this be more important for this type of molecule than 
in CaF2, just as this effect in CaFa is greater than for 
diamond? 

DAWSON: NO. The present description involves treating 
rectilinear and libration motion by the harmonic approx- 
imation. Concerning anharmonic libration, I have gone no 
further than pondering on the possibilities. For anharmonic 
rectilinear motion, the development is elementary since the 
fluorite philosophy carries over straightforwardly because 
of site symmetry but, of course, here it is the whole mole- 
cule and not the single atom as in CaF2. For the molecule, 
the problem in detail becomes more complicated since 
separability does not hold. One advantage of working in 
the harmonic approximation is that it is possible to eliminate 
your extra tensor due to site symmetry. Beyond the har- 
monic approximation, it is uncertain how much correlation 
comes in but my opinion is that, due to the restraint of 
tetrahedral site symmetry, it will probably not be large. 

JEFFERY: Is it likely that atoms are sufficiently dipolar for 
neutron diffraction results to give something other than the 
centre of charge distribution which is obtained from X-ray 
studies particularly in the case of hydrogen? 

DAWSON: Using spherical atom treatment on non-spherical 
atoms there is no guarantee, unless the non-sphericity is 
centric, that the centroid (XRD) will coincide with the 
nuclear position (N.D.) but the situations are sufficiently 
well characterized now to make it possible to anticipate 
what magnitude of differences would be involved in such 
investigations. 

BRAGG: This, it seems to me, is the fine flowering of the 
first phase of the calculations concerning an atom which 
we thought we knew something about, making the result of 
calculation agree with the observations. Does the other 
way of presenting the comparison of theory and experiment, 
the difference Fourier, give us another angle on the same 
problem? 

DAWSON: The difference Fourier is certainly a splendid 
method of visually presenting the results. There are, how- 
ever, problems of interpretation of difference map features 
which are complicated by matters such as the normal 
notions of charges in the bonds. The other way, working 
directly with atomic scattering powers in the structure 
factors themselves, allows estimation of the influence of 
each of the non-spherical components to each structure 
factor. A Fourier or difference Fourier involves compound- 
ing all these aspects together in one distribution so that 
individual items are difficult to detect. Also, in cubic cases, 
multiplicity terms introduce further complications. How- 
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ever the Fourier illustration does give an estimate of over- 
all magnitude valuable for comparisons in lower-symmetry 
structures. 

HAMILTON: Concerning anharmonic terms referred to here 
in respect of fluorite systems, has any lattice dynamic work 
by inelastic neutron scattering been interpreted in terms of 
an anharmonic model and come up with numbers of the 
same order of magnitude of terms derived from the X-ray 
work? 

DAWSON: I cannot answer but will pass the question to 
Professor Cochran. 

COCHRAN : Sorry, I do not think I can give an answer. Some 
systems have been studied. UO2 has been looked at fairly 
thoroughly. Some indications of anharmonicity are given 
by the widths of peaks but nothing has been done yet to 
give numbers of the type mentioned by Dawson. 

A~RAHAMS: Can you offer comments on what would be 
the maximum amount of systematic error in the original 
diffraction data, Fracas, which could be tolerated before cor- 
relation produces unacceptable error in the anharmonic 
vibration terms, e.g. 10% error? 

DAWSON: The essence of analysing the experimental 
measurements for this effect is governed by the nature of 
the temperature factor component with hkl dependence. 
Thus one can map the results in terms of reflexion type 
(e.g. h2 + k2 + 12 = 4n + 1) and their distribution in reciprocal 
space. If there are uncertainties in the observational data, 
this will show up when anharmonic predictions are atyp- 
ically at variance with the experimental results. 

This may be profitably illustrated by reference to the 
early stages of the BaF2 neutron diffraction study. The 
trends pointed suspicion at the counting chain and much 
time was devoted to checking. It was shown that the count- 
ing chains were indeed 'on the blink' although only to the 
extent of a few per cent. The moral of this was that knowing 
what to look for gave a sharper criterion for judging the 
performance of the experimental equipment. Of course these 
are used as indications and actual defective operation must 
be decided by independent test. However, the example 
given indicates the importance of a profitable theory- 
experiment interaction. 

COPPENS: YOU have successfully described the electron 
density of a diamond with your non-centric density thesis 
and can do this because diamond is highly symmetrical. 
Do you see any obvious way of extending your model to 
sites of lower symmetry? 

DAWSON: This is very much a function of one's mathema- 
tical ability. I have never rated mine particularly highly but 
I can see what would have to be done and I think it could 
be extended. Are you thinking of arc bonding and this sort 
of separation, or of the degeneration to pseudo-trigonal 
symmetry? These things can be done, but it means a much 
more expansive version of components which must be 
included. The purely trigonometrical situation is reasonably 
comprehensible, as also are any deviations from this. Per- 
turbations will arise but these can probably be handled. 

You are asking whether you can continue to analyse the 
structure factors directly rather than through the inter- 
mediary of the difference Fourier? 

COPPENS: No. For the simpler molecules I would take an 
atomic model, including (subsidiary) density peaks between 
atoms, which I consider essentially a different model from 
yours. 

DAWSON: I agree (as to the distinction). However, I have 
doubts as to the usefulness of this alternative. The diamond 
situation shows that the process of building up the peak 
(in the middle of the bond) is at the expense of scooping 
charge from other regions. It is, in fact, the whole distribu- 
tion around the peak which must be taken into account 
rather than just the excess peak in the middle of the bond. 
You have to have the facility to extract from one side to 
build up between the atoms. This is one feature where 
angular harmonics work well because correct normaliza- 
tion is built into the expressions. 

SRINIVASAN: The application of the anomalous dispersion 
method for the determination of the absolute configuration 
of molecules is not applicable if the structure consists of 
only one species of atom. The treatment, presented in this 
paper, seems to indicate that the aspherical electron density 
distribution involves a complex scattering factor very 
similar to the one met in anomalous scattering although 
much smaller in magnitude. Could this possibly lead to 
determination of absolute configuration in the case of a 
structure involving atoms of one type? 

DAWSON: NO. Although highly reminiscent of anomalous 
scattering in appearance, the functions are different in 
behaviour. The formalism here is in accord with Friedel's 
law and it is only when genuine anomalous dispersion oc- 
curs that the conditions allow determination of absolute 
configuration. 

MASLEN: As a question of terminology, are we justified in 
regarding libration motion as harmonic? 

DAWSON: This is an interesting point since there may 
perhaps be possible confusion. In my talk, I was at pains 
to refer where necessary to the rectilinear harmonic ap- 
proximation. Correspondingly, it is perfectly correct to talk 
about libration as torsional harmonic motion. I have 
retained the term anharmonic for motions other than those 
which can be described in quadratic components, whether 
linear or angular. 

HmSI-tFELD: Can you estimate the validity of the Hartree- 
Fock approximation from an examination in the close 
neighbourhood of the atomic nuclei? Most models tend to 
give featureless curves at these positions, but the Hartree-- 
Fock calculations show a steep slope here. 

DAWSON: I think it is beyond the bounds of normal pos- 
sibility to observe these effects. We have to remember that, 
as Higgs showed, the peak electron density for a static 
atom can be ,,,700 e./~k -3. In diamond, even with a very 
small range of vibration and an admittedly limited angular 
range, it was 21 e./~ -3. Relative to the theoretical situation, 
everything is pulled down. It seems unlikely ever to expect 
to be able to interpret features, at or near the atomic centre, 
significantly in respect of quantum mechanical molecular 
orbital calculations. There is however a genuine need for 
the theoreticians to convert their calculations to distribu- 
tions somewhat nearer in scale to what we, in fact, deal with. 
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